
1

2

What are ACLs?
ACLs are lists of conditions that are applied to traffic traveling across a
router's interface.
These lists tell the router what types of packets to accept or deny.
Acceptance and denial can be based on specified conditions.

ACLs can be created for all routed network protocols, such as Internet
Protocol (IP).

ACLs can be configured at the router to control access to a network or
subnet.

3

Reasons to Create ACLs
The following are some of the primary reasons to create ACLs:

• Limit network traffic and increase network performance.

• Provide traffic flow control.

• Provide a basic level of security for network access.

• Decide which types of traffic are forwarded or blocked at

 the router interfaces.

•For example: Permit e-mail traffic to be routed, but block all telnet

traffic.

•Allow an administrator to control what areas a client can access on a
network.
•If ACLs are not configured on the router, all packets passing through
the router will be allowed onto all parts of the network.

4

ACLs Filter Traffic Graphic

5

How ACLs Filter Traffic

6

How ACLs work.

7

Creating ACLs
ACLs are created in the global configuration mode.
There are many different types of ACLs including standard, extended, IPX,
AppleTalk, and others.
When configuring ACLs on a router, each ACL must be uniquely identified
by assigning a number to it.
 This number identifies the type of access list created and must fall within
the specific range of numbers that is valid for that type of list.

Since IP is by far the most
popular routed protocol,
addition ACL numbers have
been added to newer
router IOSs.
Standard IP: 1300-1999
Extended IP: 2000-2699

8

The access-list command

9

The ip access-group command

{ in | out }

10

ACL Example

11

Wildcard Mask Examples
5 Examples follow that demonstrate how a wildcard mask can be used to
permit or deny certain IP addresses, or IP address ranges.

While subnet masks start with binary 1s and end with binary 0s, wildcard
masks are the reverse meaning they typically start with binary 0s and end
with binary 1s.

In the examples we represent the binary 1s in the wilcard masks with Xs to
focus on the specific bits being shown in each example.

You will see that while subnet masks were ANDed with ip addresses,
wildcard masks are ORed with IP addresses.

.

12

Wildcard Mask Example #1

13

Wildcard Mask Example #2

14

Wildcard Mask Example #3

15

Wildcard Mask Example #4 - Even IPs

16

Wildcard Mask Example #5 - Odd IP#s

17

The any and host Keywords

18

Verifying ACLs

There are many show commands that will verify the content and
placement of ACLs on the router.

The show ip interface command displays IP interface information
and indicates whether any ACLs are set.

The show access-lists command displays the contents of all ACLs on
the router.

show access-list 1 shows just access-list 1.

The show running-config command will also reveal the access lists
on a router and the interface assignment information.

19

Standard ACLs
Standard ACLs check the source address of IP packets that are routed.

The comparison will result in either permit or deny access for an entire protocol suite,
based on the network, subnet, and host addresses.

The standard version of the access-list global configuration command is used to define a
standard ACL with a number in the range of 1 to 99 (also from 1300 to 1999 in recent IOS).

If there is no wildcard mask. the default mask is used, which is 0.0.0.0.
(This only works with Standard ACLs and is the same thing as using host.)

The full syntax of the standard ACL command is:

Router(config)#access-list access-list-number

{deny | permit} source [source-wildcard] [log]

The no form of this command is used to remove a standard ACL. This is the syntax:
Router(config)#no access-list access-list-number

20

21

Permitting a Single Host

Router(config)# access-list 1 permit 200.100.50.23 0.0.0.0

or

Router(config)# access-list 1 permit host 200.100.50.23

or

Router(config)# access-list 1 permit 200.100.50.23

(The implicit “deny any” ensures that everyone else is denied.)

Router(config)# int e0

Router(config-if)# ip access-group 1 in

or

Router(config-if)# ip access-group 1 out

22

Denying a Single Host

Router(config)# access-list 1 deny 200.100.50.23 0.0.0.0

Router(config)# access-list 1 permit 0.0.0.0 255.255.255.255

or

Router(config)# access-list 1 deny host 200.100.50.23

Router(config)# access-list 1 permit any

(The implicit “deny any” is still present, but totally irrelevant.)

Router(config)# int e0

Router(config-if)# ip access-group 1 in

or

Router(config-if)# ip access-group 1 out

23

Permitting a Single Network
Class C

Router(config)# access-list 1 permit 200.100.50.0 0.0.0.255

or

Class B

Router(config)# access-list 1 permit 150.75.0.0 0.0.255.255

or

Class A

Router(config)# access-list 1 permit 13.0.0.0 0.255.255.255

(The implicit “deny any” ensures that everyone else is denied.)

Router(config)# int e0

Router(config-if)# ip access-group 1 in

or

Router(config-if)# ip access-group 1 out

25

Denying a Single Network
Class C

Router(config)# access-list 1 deny 200.100.50.0 0.0.0.255

Router(config)# access-list 1 permit any

or

Class B

Router(config)# access-list 1 deny 150.75.0.0 0.0.255.255

Router(config)# access-list 1 permit any

or

Class A

Router(config)# access-list 1 deny 13.0.0.0 0.255.255.255

Router(config)# access-list 1 permit any

(The implicit “deny any” is still present, but totally irrelevant.)

26

Permitting a Class C Subnet
Network Address/Subnet Mask: 200.100.50.0/28

Desired Subnet: 3rd

Process:

32-28=4 2^4 = 16

1st Usable Subnet address range it 200.100.50.16-31

2nd Usable Subnet address range it 200.100.50.32-47

3rd Usable Subnet address range it 200.100.50.48-63

Subnet Mask is 255.255.255.240 Inverse Mask is 0.0.0.15

or subtract 200.100.50.48 from 200.100.50.63 to get 0.0.0.15

Router(config)# access-list 1 permit 200.100.50.48 0.0.0.15

(The implicit “deny any” ensures that everyone else is denied.)

27

Denying a Class C Subnet
Network Address/Subnet Mask: 192.68.72.0/27

Undesired Subnet: 2nd

Process:

32-27=5 2^5=32

1st Usable Subnet address range it 192.68.72.32-63

2nd Usable Subnet address range it 192.68.72.64-95

Subnet Mask is 255.255.255.224 Inverse Mask is 0.0.0.31

or subtract 192.68.72.64 from 192.68.72.95 to get 0.0.0.31

Router(config)# access-list 1 deny 192.68.72.64 0.0.0.31

Router(config)# access-list 1 permit any

(The implicit “deny any” is still present, but totally irrelevant.)

28

Permitting a Class B Subnet
Network Address/Subnet Mask: 150.75.0.0/24

Desired Subnet: 129th

Process:

Since exactly 8 bits are borrowed the 3rd octet will denote the

subnet number.

129th Usable Subnet address range it 150.75.129.0-255

Subnet Mask is 255.255.255.0 Inverse Mask is 0.0.0.255

or subtract 150.75.129.0 from 150.75.129.255 to get 0.0.0.255

Router(config)# access-list 1 permit 150.75.129.0 0.0.0.255

(The implicit “deny any” ensures that everyone else is denied.)

29

Denying a Class B Subnet
Network Address/Subnet Mask: 160.88.0.0/22

Undesired Subnet: 50th

Process:

32-22=10 (more than 1 octet) 10-8=2 2^2=4

1st Usable Subnet address range it 160.88.4.0-160.88.7.255

2nd Usable Subnet address range it 160.88.8.0-160.88.11.255

50 * 4 = 200 50th subnet is 160.88.200.0-160.88.203.255

Subnet Mask is 255.255.252.0 Inverse Mask is 0.0.3.255

or subtract 160.88.200.0 from 160.88.203.255 to get 0.0.3.255

Router(config)# access-list 1 deny 160.88.200.0 0.0.3.255

Router(config)# access-list 1 permit any

30

Permitting a Class A Subnet
Network Address/Subnet Mask: 111.0.0.0/12

Desired Subnet: 13th

Process:

32-12=20 20-16=4 2^4=16

1st Usable Subnet address range is 111.16.0.0-111.31.255.255

13*16=208

13th Usable Subnet address range is 111.208.0.0-111.223.255.255

Subnet Mask is 255.240.0.0 Inverse Mask is 0.15.255.255

or subtract 111.208.0.0 from 111.223.255.255 to get 0.15.255.255

Router(config)# access-list 1 permit 111.208.0.0 0.15.255.255

(The implicit “deny any” ensures that everyone else is denied.)

31

Denying a Class A Subnet
Network Address/Subnet Mask: 40.0.0.0/24

Undesired Subnet: 500th

Process:

Since exactly 16 bits were borrowed the 2nd and 3rd octet will denote

the subnet.

1st Usable Subnet address range is 40.0.1.0-40.0.1.255

255th Usable Subnet address range is 40.0.255.0-40.0.255.255

256th Usable Subnet address range is 40.1.0.0-40.1.0.255

300th Usable Subnet address range is 40.1.44.0-40.1.44.255

500th Usable Subnet address range is 40.1.244.0-40.1.244.255

Router(config)# access-list 1 deny 40.1.244.0 0 0.0.0.255

Router(config)# access-list 1 permit any

32

33

Permit 200.100.50.1,5,13,29,42,77

access-list 1 permit host 200.100.50.1

access-list 1 permit host 200.100.50.5

access-list 1 permit host 200.100.50.13

access-list 1 permit host 200.100.50.29

access-list 1 permit host 200.100.50.42

access-list 1 permit host 200.100.50.77

Sometimes a group of addresses has no pattern and the best way to

deal with them is individually.

(The implicit “deny any” ensures that everyone else is denied.)

34

Permit 200.100.50.16-127

access-list 1 deny 200.100.50.0 0.0.0.15 (0-15)

access-list 1 permit 200.100.50.0 0.0.0.127 (0-127)

First we make sure that addresses 0-15 are denied.

Then we can permit any address in the range 0-127.

Since only the first matching statement in an ACL is applied an address

in the range of 0-15 will be denied by the first statement before it has

a chance to be permitted by the second.

(The implicit “deny any” ensures that everyone else is denied.)

